The BETAPAEDIC Study: Assessment of Safety, Tolerability, Clinical Effectiveness and Cognition in Juvenile Relapsing-Remitting MS Patients Treated With Interferon Beta-1b

INTRODUCTION

The incidence of multiple sclerosis (MS) in children and adolescents is increasing. Interferon beta-1b (IFN-B-1b, Betaseron®) has a favourable safety profile and is known to reduce relapse rate (RR) in patients ≥18 years of age with relapsing-remitting MS (RRMS). Retrospective studies with low numbers have indicated a similar safety profile in juvenile MS.

Objective: The BETAPAEDIC study is the first prospective, international, multicentre, non-interventional, post-authorisation safety study to assess the safety and tolerability of IFN-B-1b in juvenile MS patients, measuring clinical activity and magnetic resonance imaging disease parameters. Determining the neuropsychological profile, such as interferon beta-1b (IFN-B-1b; Betaseron®), in children have often been extrapolated from data collected in adults.1,4,12

However, small retrospective studies and case reports in paediatric populations14-20 indicate that IFN-B-1b has a favourable safety profile—similar to that seen in adults1,21—and may reduce relapse rate and delay disease progression.

Information on the safety and efficacy of IFN-B-1b in children and adolescents is limited.

The BETAPAEDIC study—the first prospective, international, multicentre, non-interventional, post-authorisation safety study—has thus been undertaken to assess the safety and tolerability profile of IFN-B-1b in adolescents with RRMS.

Study Design

The BETAPAEDIC study seeks to recruit 100 treatment-naïve patients aged 12–16 years old who were diagnosed with RRMS by core diagnostic criteria and scheduled to receive IFN-B-1b. Patients will be recruited from neurologic/ paediatric centres across Europe between January 2010 and March 2012 (Table 1). Patients will be treated at the discretion of their attending physicians with the standard IFN-B-1b dose (250 μg), injected subcutaneously every other day.

Patients will be examined every 6 months for up to 2 years (Table 2).

Introduction

- Approximately 3-10% of all patients with multiple sclerosis (MS) experience symptom onset before the age of 18 years.1 Although juvenile MS is becoming increasingly recognised, its exact prevalence is unknown.

- Juvenile MS patients present almost exclusively (97%) with the relapsing-remitting form of the disease.1 RRMS.

- Children with MS face unique problems related to the severity and potential long-term consequences of the disease, which include physical disability, cognitive impairment2 and psychological impact.3

- Among children with paediatric MS, cognitive impairment is hypothesised to occur in the domains of processing speed,4 concentration,5 verbal working memory,6 abstract reasoning7 and visual-motor integration.

- Compared to patients with adult-onset disease, paediatric MS patients take approximately 10 years longer from diagnosis to reach second primary progressive MS and irreversible MS disease.8

- Although paediatric MS may progress more slowly, disease milestones are reached at a younger age, with paediatric MS patients converting to SPMS at a 10-year younger median age relative to adult MS patients.9

- In adults, early treatment has been shown to delay conversion to clinically definite MS (COM)10 and to positively affect clinical and magnetic resonance imaging (MRI) aspects of the disease.11,12

- In light of the benefits shown in adults, the International Pediatric MS Study Group recommends early treatment for children with paediatric MS.13

Evaluations

Clinical effectiveness will be assessed by annualised RR and Expanded Disability Status Scale score progression.

Fatigue will be measured by the Fatigue Severity Scale.

Standard Progressive Matrices (SPM) will be used to assess intellectual ability.

Neuropsychological function will be evaluated by four sub-tests:

- vocabulary, block design, digit span and spelling from the Wechsler Intelligence Scale for Children—fourth edition (WISC-IV®).

- Visual-motor integration and verbal memory, spatial analysis, visual-motor integration, visual perception, motor coordination, intelligence and vocabulary.

- Disease course

- MRI outcomes

Outcomes Assessment

For clinical outcomes, the proportion of relapse-free patients, the time to first relapse and annualised RR will be reported.

Neuropsychological outcomes will include the change in total scores from baseline to each visit. Neuropsychological outcomes will also be compared with age-matched normative values.

Correlation analyses between neuropsychological outcomes and the following will be performed:

- Processing speed, concentration, verbal working memory, spatial analysis, visual-motor integration, visual perception, motor coordination, intelligence and vocabulary

- Disease course

- MRI outcomes

Perspective

The BETAPAEDIC study is expected to illuminate the effectiveness and safety profile of IFN-B-1b in children and adolescents and to illustrate the level of cognitive dysfunction in patients with juvenile MS.

The BETAPAEDIC study should also help to confirm findings from retrospective-scale studies, which showed a similar safety profile for IFN-B-1b in juveniles and adults.1,2,13

Potential correlations between disease-related variables, fatigue and neurocognitive outcomes may provide insights into the factors that modulate disease progression with betasheets with juvenile MS.

As with adults, it is hoped that early treatment with IFN-B-1b will translate into favourable long-term outcomes in children and adolescents with MS. However, prolonged follow-up studies are needed to determine such effects and whether the long-term safety profile observed in adults1,12 is recapitulated in patients with rates (RR) and delay disease progression.13

REFERENCES

